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INTRODUCTION

Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakis di-hydrogen
phosphate, IP6) is an organic form of phosphorous, of
molecular weight 659.86 having molecular formula
C6H18O24P6. It is the primary source of inositol and storage
form of phosphorous in plants particularly in cereal grains
and legumes that represent approximately 75% to 80% of the
total phosphorous available in nature (Chunshan et al.,  2001;
Tye et al.,  2002; Turner et al., 2002; Chang et al.,  2004; Kaur
and Satyanarayana., 2005; Huang et al., 2009). Such plant
materials are used as animal feed ingredients, of which the
phytate (salts of phytic acid), as phosphorous, is not well
digestible by monogastric animals, like pig, poultry and fish,
due to lack of phytase. Consequently, it contributes to the
phosphorous pollution as a fall out of indigestible food material
from intensive livestock production (Cromwell et al., 1995).
Being an important mineral, phosphorous must be available
to animal and human to meet their daily requirements.
Presence of indigestible phosphorous or the excess use of
dietary phosphorous becomes responsible for environmental
problems (Raza et al., 2010). Also, the reactive groups of the
IP6, make it a strong chelating agent that binds to cations of
certain metals and become the antinutritional factor by
decreasing the dietary availability of nutrients for animals (Batal
and Abdelkarim, 2001; Applegate et al.,  2003; Veum et al.,
2006; Bohn et al.,  2008).

To overcome the problem of phosphorous deficiency in
animal feed and to control the environmental pollution,
phytase seems destined to become increasingly important.
Phytase or myo-inositol hexakis phosphate phosphohydrolase
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(E.C 3.1.3.8), can catalyse the hydrolysis of phytic acid to
inositol and orthophosphoric acid (Wodzinsky and Ullah,
1996; Liu et al., 1998; Chunshan et al., 2001; Cho et al.,
2003; Wang et al, 2004; Casey and Walsh, 2004).
Supplemental microbial phytase in diets for swine, poultry
and fish effectively improves phytate phosphorous utilization,
thereby decreasing excretory phosphorous pollution
(Rutherfurd et al., 2002; Augspurger et al., 2003; Olukosi et
al., 2007). Thus, enzymatic hydrolysis using phytase improves
nutritional value of the feed material.
Phytase can be derived from a number of sources, including
plants animals and microorganisms however, microbial
sources are most promising for the production of phytase on
a commercial level. Several strains of bacteria, yeast and fungi
are used for the phytase production (Vohra and
Satyanarayana, 2003; Konietzny and Greiner, 2002; Pandey
et al., 2001). However, bacterial phytase are mostly cell
associated with the exception of Bacillus subtilis, Lactobacillus
amylovorus and Enterobacter sp (Vohra and Satyanarayana,
2003).
This paper deals with study of extracellular phytase production
by Klebsiella pneumoniae SCTb2.

MATERIALS AND METHODS

Media used

For screening and maintenance of the isolates, phytase
screening medium (PSM) as detailed in Table 1 was used. To
select the phytase producing medium, several media were
tested as presented in Table 1.
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Inoculum preparation

Inoculum was prepared in PSM (20 ml in 100 ml conical
flask) (Table 1) and incubated at 37°C for 48 hr under shaking
(210 rpm). Fermentation medium was inoculated with 1%
inoculum (109 CFU/ml).

Selection of producer organism

Phytase producing ability of the isolates was tested in petriplate
containing Medium No. F. The plates were incubated at 37°C
for 72 hr and observed the production by measuring the
cleared zone formation, if any. Final selection was made
through phytase assay (Engelen et al., 2001) using cell free
broth as crude enzyme source.

Medium optimization

Several media (Table 1) were tried to find out a suitable
fermentation medium for growth and phytase production. In
addition to Na-phytate, other common carbon sources were
checked at 1% level and the selected carbon supplement also
attempted at varying concentration. Different N2 sources were
tried, as nitrogen equivalent, of selected basal medium. Also,
the concentration of selected nitrogen source was optimized.

Optimum fermentation period, temperature, pH, were
determined in selected medium condition, considering the
standardized factor in each case. Effect of surfactants and
vitamins were optimized for growth and phytase production.
In this experiment, the surfactants and vitamins were filter
sterilized and added to the sterile medium aseptically to reach
the desired concentration.

Each experiment was done in triplicates and presented as
mean value.

Phytase assay

Phytase assay was performed as described by Engelen et al
(2001). Reaction mixture contained 1.0 ml of enzyme and 2.0
ml of substrate (0.84 gm sodium phytate in 90 ml of  acetate
buffer, adjusted to pH 5.5 with  acetic acid and made up to
100 ml with distilled water) and incubated for 65 minutes at
37°C. Reaction was stopped by adding 4 ml of color reagent
[25 ml ammonium heptamolybdate (10% of ammonium
molybdate in 0.25% ammonia solution) with 25 ml
ammonium vanadate (2.35 g ammonium vanadate in one
liter of 2% (v/v) nitric acid solution), adding 16.5 ml nitric acid
(65%), mixing slowly and diluting to 100 ml with water]. Then
cooled to room temperature and measured at 415 nm. The
substrate mixture and coloring reagent were used as a blank.

One unit of the phytase activity was defined as the amount of
enzyme able to hydrolyze phytate to give one mole of inorganic
phosphate per min under the assay conditions. Specific activity
was expressed in units of enzyme activity per milligram of
protein.

Statistical analysis

The statistical analysis was conducted by using Microsoft office
Excel, 2007 (Troesch et al., 2009).  Standard error of a set of
values is formulated by the mean standard error (standard
deviation/”n) for an n set of values.

16s rRNA gene sequencing

Bacterial 16S rRNA genes were amplified from boiled cell
extract using specific primers f27 and r1492. The PCR
amplification reactions were performed using high fidelity PCR
master kit (Roche Applied Science) according to the
manufacture’s instruction. Primers at a concentration of 300
nM each were used with 25µl PCR master mix (provided by
the manufacturer) in a final reaction volume of 50µl. The thermal
cycles were: 94°C for 5 min and subjected to 30 cycles each
consisting of 30 sec at 94°C; 30 sec at 60°C and 1 min at
72°C; and again for 7 min in same temperature to complete
primer extension. The PCR products were electrophoresed
on agarose gel in TAE buffer. After run, the gel excised and
eluted using Qiagen gel elution kit. The sequence of PCR
amplified 16S rDNA fragments were determined using
universal primers 27f, 357f, 530f, 704f, 926f, 1242f, 321r,
685r, 907r, 1069r, and 1220r (Gerhardt et al., 1994),
terminator sequencing kit and an automated DNA sequencer
ABI 377; Applied biosystem (Gerhardt et al., 1994) for
phylogenic analysis (Pearson et al., 1988) 16S  rDNA sequence
of the isolate was compared against those in the EMBL, Gen
Bank and DDBJ database using FASTA (Version 3.4t23).
Multiple alignment 16s rDNA sequences was done using the
CLUSTALW program (Thompson et al., 1994).

RESULTS

In an attempt to isolate phytase producing bacteria, 6 isolates
were short listed out of about 200. From the short listed ones,
the isolate SCTb2 was selected for its optimum production
both in solid and liquid medium (Fig. 1a). Several media were
tried to find out a suitable fermentation medium. It was found
that the isolate (SCTb2) could grow and produce phytase in
all the test media, but the Medium No. F was selected for
optimum growth and production (Fig. 1b).
To optimize the carbon supplementation, several carbon
sources were tried in the selected medium for growth and
phytase production by the isolate. No other than sucrose
supplementation showed enhancement of growth and phytase
production (Fig. 2a) and 1% sucrose found optimum (Fig. 2b).
Several N2 sources (as nitrogen equivalent) were attempted in
optimum medium condition and all of them were utilized for
growth and production. However, ammonium nitrate was
found as most suitable (Fig. 3a). Hence different concentrations
of ammonium nitrate were tested and 0.1% was selected as
optimum (Fig. 3b) for phytase production by the selected
isolate.
While selecting the optimum fermentation period the
experiment was conducted up to 96 hr, it was found that the
isolate SCTb2 could produce maximally at 72 hr of
fermentation (Fig. 4a). In addition, the fermentation was carried
out in different temperature condition. The isolate could grow
and produce suitably in the test range. However, it showed
optimum production at 35°C (Fig. 4b). Fermentation was also
conducted in a range of pH condition and found its
compatibility to the test range, but to produce maximally at
pH 6.0 (Fig. 4c).

To study the effect of surfactants for enhancement of
production, several surfactants were used. Inhibitory effect
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Table 1: List of media used
Media components(%w/v) A B C D E F PSM
(NH4)2SO4 0.03 - 0.03 0.03 - 0.03 0.3
MgSO4 0.05 0.05 0.05 0.015 0.01 0.02 0.05
KH2PO4  - - 0.1 0.1 0.1 0.1 -
CaCl2 0.01 - - 0.01 - 0.01 0.01
FeSO4 0.001 0.001 - - - - 0.01
Asparagine - 0.1 - - - - -
KCl - 0.05 - - - - -
K2HPO4 - - - - 0.7 - -
KNO3 - - - - 0.1 - -
Na- phytate 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 2: Effect of vitamins on growth kinetics and phytase production by Klebsiella pneumoniae SCTb2
vitamin Concentration(µg/ml) Biomass (g) Phytase production(U)
Pyridoxine 1 0.104 1.84

10 0.108 1.85
100 0.112 1.86

Pentathenic acid 1 0.103 1.85
10 0.105 1.86
100 0.103 1.87

Riboflavin 1 0.104 1.85
10 0.103 1.88
100 0.104 1.9

Thiamine 1 0.108 2.21
10 0.115 2.4
100 0.123 3.151

Figure 1: Growth kinetics and phytase production:  (a) Selection of  isolate and (b) Selection of  medium
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Figure 2: Growth kinetics and phytase production by Klebsiella pneumoniae SCTb2: (a) Effect of carbon supplements and (b) Concentration
of selected carbon source
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Figure 3: Growth kinetics and phytase production by Klebsiella pneumoniae SCTb2: (a) Effect of nitrogen source and (b) Concentration of
selected nitrogen source
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Figure 4: Growth kinetics and phytase production by Klebsiella
pneumoniae SCTb2: (a) Effect of fermentation period, (b) Effect of
temperature and (c) Effect of pH

was observed with EDTA, where as no significant effect with
SDS, but Tween 80 (0.1%) showed certain enhancement for
phytase production (Fig. 5a). Of the different vitamins tested,
most of them did not impart any significantly positive effect
except thiamine at 100 µg/ml (Table.2).
The identification of the selected strain was carried through
preliminary characterization (data not shown) 3 up to 16s
rDNA sequencing. The complete 16s rRNA gene sequences
of the organism were compared with those available in the
EMBL, Gen Bank and DDBJ databases and FASTA analyses
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Figure 6: The phylogenic tree construct of isolate (SCTb2) based on
16SrDNA sequences
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with those of existing species. Results showed that the isolate
SCTb2 had maximum identity (99-100%) with Klebsiella
pneumoniae. Multiple alignment of those sequences revealed
that selected strain SCTb2 and Klebsiella pneumoniae were
identical to each other (Fig. 6). Further, the higher value of 16s
rRNA gene sequence similarity observed between isolate
SCTb2 and related species of all the close genera, it appeared
that the isolate SCTb2 represent the same phylogenetic lineage
along with Klebsiella pneumoniae.

DISCUSSION

Since last decade, phytase shows a potential demand,
particularly as feed supplements (Troesch et al., 2009).
Microbial phytases are considered valuable in upgrading the
nutritional quality of plant based feed ingredients.  Phytase
from several species of bacteria, yeast and fungi have been
studied (Pandey et al., 2001 Konietzny and Greiner, 2002).

Bacterial phytases are mostly cell associated, with the
exception of Bacillus subtilis, Lactobacillus amylovorus, and
Enterobacter sp.4 (Vohra and Satyanarayana, 2003).
However, certain bacteria (Bacillus, Staphylococcus,
Brevibacterium, Pseudomonas and Kocuria)  are capable of
producing  phytate degrading enzyme extracellularly under
specified conditions and Staphylococcus lentus ASUIA 279
showed a good amount of extracellular phytase production
(Hussin et al., 2007). There are four groups of potential phytase
producing bacterial isolate, including Pseudomonas spp.
(Richardson et al., 1997; Kim et al., 2002; In et al., 2004). In
this study, Klebsiella pneumoniae SCTb2 found as the best
phytase producer among the six short listed ones, through
quantitative screening. Hill et al., (2007) screened 10 typical
soil bacteria that released orthophosphate from phytate within
21hr of fermentation and 6 of them belonged to the genus
Pseudomonas.

Identification of the isolate (SCTb2), based on the result of
morphological, cultural, biochemical characterization and also
16s rDNA sequencing to identify it as a strain of Klebsiella
pneumoniae.

The energy required and the physical support for an organism
to grow and to produce the desire metabolite is primarily
provided by the substrate (Pandey et al., 2001; Spier et al.,
2008). The selected medium (Medium F) was taken as a basal
medium and the process parameters under study were varied.
While using supplemental carbon and phosphorous sources
other than Na-phytate significant phytase production was
observed and sucrose appeared as the best carbon
supplement at 1% level. Result indicated that additional carbon
source was utilized favorably for the production of phytase by
this organism. To initiate growth and metabolism, bacteria
require carbon sources at easy available form. Further, the
effect of supplemental carbon sources (Glucose, Galactose,
Sucrose, Lactose, and Starch) to the fermentation medium on
enzyme production was evaluated (Hosseinkhani et al., 2009).

Impact of inorganic nitrogen sources to the fermentation
medium on enzyme production was evaluated by
incorporating various nitrogen sources in the medium (Spier
et al., 2008; Hosseinkhani et al., 2009). It was found that

0.1% ammonium nitrate supported for optimum production
and growth but further increment in amount of nitrogen
inhibited the yield of phytase.

While optimizing the physical parameters, the experimental
results suggested that phytase production increased
progressively along with the increase in fermentation period
until 72 hr and was decreased thereafter, probably due to the
reduced nutrient level of medium, affecting enzyme synthesis.
Declined enzyme yield could also be due to poisoning or
denaturation of the enzyme under changed environmental
condition (Sabu et al., 2002). Temperature found to influence
the rate of phytase production by the isolate. The maximal
phytase production was observed at 35°C and the enzyme
production decreased with further increase in temperature.
Optimal temperature for production of most phytases varies
from 30 to 80°C (Hara et al., 1985; Wang et al., 2004). The
pH of the medium is the other most important factor for a
fermentation process. Optimum pH required for maximal
phytase production during shake flask method was evaluated
under varied pH levels (Hara et al., 1985; Ullah et al., 2008).
The enzyme production was maximum at pH 6.0 for
3Klebsiella pneumoniae, further increase of pH of the
fermentation medium reduced the growth and enzyme
production (Wang et al., 2004).

Vitamins are the important growth factor for every organism.
The potential exists for vitamins and feed enzymes to counteract
some metabolic disorders and challenges in poultry (Broz
and Ward, 2007). In this study, thiamine (100ìg/ ml)
supplementation showed positive effect. Like vitamins,
surfactants are known to affect the growth and enzyme
production (Nampoothiri et al., 2004). A high phytase titre
was attained in the medium containing sodium oleate and
non-ionic detergents (Tween-20, 40 and 80). However, Triton
X-100 (a non-ionic detergent) and SDS (an anionic detergent)
inhibited enzyme production in Sporotrichum thermophile.
Probably due to increase of viscosity of the medium that
resulted in decrease in the rate of oxygen transfer or due to the
toxic effect of surfactants (Rao and Satyanarayana, 2003). The
surfactants may also act as detergents to solubilize membrane
proteins thereby increasing membrane permeability that lead
to the concomitant enhancement in the secretion of
biomolecules (Ne’eman et al., 1971; Rao and Satyanarayana,
2003). Similarly, Tween as well as oleic acid increased phytase
production by Aspergillus niger (El-Batal and Abdel Karem,
2001) and in A. carbonarius (Ebune et al., 1995). In
thermophilic mould Thermoascus aurantiacus, Tween-20 and
Tween-80 are reported to enhance phytase production
(Nampoothiri et al., 2004). In this study, fermentation with
Tween-80 (0.1%, vD v) showed satisfactory result.
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